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ABSTRACT

The transient analysis of hydrodynamic lubrication of a point-contact Is

presented. A body-fitted coordinate system is introduced to transform the

physical domain to a rectangular computational domain, enabling the use of the

Newton-Raphson method for determining pressures and locating the cavitation

boundary, where the Reynolds boundary condition Is specified. In order to

obtain the transient solution, an explicit Euler method is used to effect a

time march. The transient dynamic load is a sinusoidal function of time with

frequency, fractional loading, and mean load as parameters.

Results include the variation of the minimum film thickness and phase-lag

with tinfe as functions of excitation frequency. The results are compared with

the analytic solution to the transient step bearing problem with the same

dynamic loading function. The similarities of the results suggest an

approximate model of the point contact minimum film thickness solution.

*NASA Resident Research Associate at Lewis Research Center.



INTRODUCTION

Nonconformal contact machine elements in power train systems such as

gears, rolling element bearings, and cam and follower mechanisms are subject

to transient lubrication. The transient characteristics are due to the time

variation of loading, geometry, and the rolling or sliding speed in the line

or point contact. These variations result in a squeeze effect which affects

the minimum film thickness distribution. An example of this is the ball

bearings in a rotordynamic system in which there exist cyclic variations of

the dynamic load. Recently, the transient hydrodynamic and elastohydrodynamic

line contact problem has received much attention (Refs. 1 to 3). Among the

several authors, Vichard (Ref. 1) pioneered the basic transient

characteristics of the line contact problem analytically and experimentally

including the viscous damping phenomenon. In this paper, the transient

solution of the hydrodynamically lubricated point contact presented.

In solving the point contact transient problem numerically, a fast

computer code is needed to solve the two dimensional Reynolds equation for

many time steps. Numerical methods for solving the simultaneous equations

resulting from the e'scretization of the Reynolds equation are usually

performed using either iterative methods or semidirect methods (Ref. 4). The

former commonly involves the Gauss-Seidel method, the latter combines the

Newton-Raphson method with a direct inversion of the Jacobian matrix. An

important difference between the iterative method and the semidirect method is

that the initial guess plays an important role in the latter, whereas the

former is relatively insensitive to the initial guess. With the semidirect

method, the use of a previous solution as an initial guess accelerates the

solution process, but a good initial guess usually does not help the iterative

method significantly (Ref. 4). The semidirect method is preferred for

transient problem since the solution of the previous time step accelerates the
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next step solution. Furthermore, the Newton-Raphson method has a quadratic

convergence rate, so, in general, the solution can be terminated within ten

iterations. When a parallel processing computer using vectorization is

employed the matrix inversion is very fast. In addition, there is no need to

use underrelaxatlon factors, and the solution can be obtained more rigorously

than is typical with iterative methods. The matrix inversion can be done by

the Thomas algorithm, and there is no need to store the whole Jacobian matrix.

When the semidirect method is used in the point contact problem, the

cavitation boundary, where the Reynolds boundary condition (B.C.) is specified,

is difficult to locate. There is a fundamental difference between the line

contact and the point contact problem. In the line contact case, the Reynolds

equation is integrated once; the Neumann condition is introduced; and the

integration constant is found as a part of the solution. In the

two-dimensional problem, the Reynolds equation can not be integrated. Since

the Reynolds B.C. insures mass conservation across the boundary, the

cavitation boundary should be located as accurately as possible. However, the

location is not known in advance; it is a part of the solution. It is a free

boundary where two B.C.'s are present: Dirichlet B.C. (pressure is zero), and

Neumann B.C. (normal pressure gradient is zero). The relaxation method of

Christopherson (Ref. 5), deriv, to,- the hydrodynamic lubrication of a journal

bearing, has been used to solve tris kind of free boundary value problem.

This method truncates negative computed pressures whenever they occur during

iteration. However, this method can not be used In the semidirect method. In

this work a body-fitted coordinate system is Introduced which transforms the

unknown boundary into a fixed boundary and the unknown boundary function is

introduced into the equations of motion. The smooth cavitation boundary is

found up to truncation and machine errors, whereas the result for

Christopherson's method is dependent upon the mesh size near the boundary. To
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detect the minute change of the cavitation boundary between the adjacent time

steps, the current method is desirable. Another advantage of this method is

that a nonzero pressure gradient condition can be implemented for very lightly

loaded cases where surface tension may play an important role, or for

non-Newtonian, viscoelastic fluids.

In the present paper the transient hydrodynamic lubrication of a step

bearing is solved analytically to provide physical insight into the transient

characteristics of hydrodynamic lubrication. Next, the point contact problem

is solved numerically by the Newton-Raphson method with Thomas algorithm.

This method is fast and does not require vast computer storage. Parallel

processing by vectorization is also utilized.

The variation with time over a loading cycle of the minimum film

thickness, squeeze velocity, and the cavitation boundary is studied for a wide

range of excitation frequencies.

NOMENCLATURE

F dimensionless load

F0  dimenslonless mean load

F right hand side equation of discretized equation

f load, N (point contact), N/m (step bearing)

fo mean load, N (point contact), N/m (step bearing)

G dimensionless cavitation boundary function

G' first derivative of G with respect to Y

G" second derivative of G with respect to Y

g cavitation boundary curve function

H dimensionless film thickness

H0  dimensionless minimum film thickness

Ro normalized dimensionless minimum film thickness, HO/Hom
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HOm dimensionless minimum film thickness for F0

h film thickness, m

h0  minimum film thickness, m

k number of iteration of Newton-Raphson method

L length of the step bearing, m

2. reference length for order-of-magnitude analysis, m

NI number of grid in E direction

NJ number of grid in n direction

n normal direction vector

P dimensionless pressure

p pressure, N/m2

R radius of sphere, m

R residual vector of discretized equation

t time, sec

u solution vector of the discretized equations

um  average surface velocity in x-direction, m/sec
Accesion For

u0  reference velocity for order-of-magnitude-analysis, m/sec NTIS CRA&J

DTIC TAB El
X dimensionless coordinate along rolling direction U,13nnoi, nced

jiltiflicJiton1

XA dimensionless inlet boundary location in X-direction

x coordinate along rolling direction By
Di.-tibution I

xA inlet boundary location in x-direction Avdtdbility Codes

Y dimensionless coordinate transverse to rolling direction Avi ;,'or

Dist

YB dimensionless inlet boundary location in Y-direction

y coordinate transverse to rolling direction

YB inlet boundary location in y-direction

a viscosity-pressure coefficient, m2 /N

a dimensionless viscosity-pressure coefficient
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j3 fractional loading amplitude for sinusoidal loading

y dimensionless frequency

& dimensionless film thickness of the step bearing

normalized film thickness of step bearing, 6160m

SOm dimensionless film thickness of the step bearing for mean load

p lubricant viscosity, Pa-sec

p dimensionless lubricant viscosity

PO lubricant viscosity at atmospheric pressure, Pa-sec

v kinematic viscosity, m2 /sec

E,n coordinates of transformed domain

p lubricant density, kg/m 3

T dimensionless time

*s phase angle of the step bearing solution, deg

*p phase angle of the point contact solution, deg

Q physical domain

Q' computational domain

frequency of sinusoidal loading, :ycle)/sec

ANALYTICAL SOLUTION OF A STEP BEARING

Consider the simple step bearing shown in Fig. 1. Note that the step

bearing used here is subjected to an oscillating normal motion and is closed

at the exit end. To the authors' knowledge, this particular solution is not

available in the literature and is therefore presented here. The film profile

and the dynamic force are:

h(x,t) = i(t), 0 < X < L,

=0, x - L, (1)

f(t) = f0(l + 3 sin wt). (2)
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For an incompressible, isoviscous, Newtonian fluid, the governing

equation is,
/ _U 1  (3)

a/h3  = 12poUm Lx + 12pO L. ; = 1"
ax a) lPU ax 0atC ' 2

The boundary conditions and the initial condition are,

p = 0 at x - 0,

h - 0 at x - L, (4)

h = hi  when t = 0.

With the following definitions,

h tum xp L. F= f wL&LXPO m F PoU m* mi

the dimensionless equations are,

a (3 "P = 12 aX+ 12a

6(X,t) = 6(T), 0 < X 0,

=0, X 1, (5)

P =0 at X =0,

6 = 6 when 0 = ,

F(T) = Fo(l + 3 sin yt). (6)

After integrating Eq. (5) three times using,

I P dX = F(t) (7)

the following nonlinear first order differential equation results:

2 a6 3 1

&3 at 62 - F(). 
(8)

The solution of Eq. (8) subject to the B.C.'s In Eq. (5) is,

6(t) 1 [ (±0+ 5 Nye-  + F 0 + 0  (3 sin yt - y cos Yt)

2(y2 + 9)) 2(y2 + 9)

(9)

After a sufficiently long time (x * ), the exponential term vanishes to zero,

and the time variation of the film thickness becomes,
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Om 1 20m 2 sin(y -- s)

60m s = tan- 1 ). (10)

The formula for the squeeze velocity is obtained by differentiating

Eq. (10),
.-3/2

om  ID (- ' Cos(yt - )1 + sin(yT - s (11)
6om 

-7 )I

ANALYTICAL FORMULATION OF THE POINT CONTACT PROBLEM

The physical model is illustrated in Fig. 2. The radius of the sphere is

R and the dynamic force is the same as that of the step bearing. The two

dimensional, transient, incompressible form of the Reynolds equation for

Newtonian flow is,

)x + L t =1u + 12

TxPax ayP ay max at'
where

p = p(x,y,t) (12)

h = h(x,y,t)

P = p(x,y,t).

The parabolic approximation of the film thickness equation of the sphere

is:

h h0 +1 (X 2+ 2). (13)

At a given time, the generated pressure distribution is balanced by the

dynamic load,

f(t) - j J P(x,y,t)dx dy. (14)
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The plezoviscous effect is modelled by the Barus relation (16):

p pOec p . (15)

The boundary conditions are:

p = 0 at x AxA 0 < y E YB"

p =0 at x A  x < g(B't) Y YB'

(16)

p=; = 0 at x = g(y,t) 0 y YB,

0 < x < g(Ot) y = 0.

ay A at X A'

At the cavitation boundary, x = g(y,t), the pressure and the normal

pressure gradient are zero (Reynolds B.C.). Using symmetry at y = 0, the

Neumann B.C. is imposed and only half of the domain is modelled.

With the following definitions,

x .;Y._ H h . p R .F f
R R POPm oUm R

U mt Y R. P--
= ; = mm' : Z_. G = -

R ~ w - 1'R

the dimensionless equations are:

a (H P L(-H P 2LH.1 aHTx axH ax a'

H = H0 + I (X2 + y2),

-02

yB rG(Y)

F(,) = 2 P(X,Y,T)dX dY, (17)

0 XA

F(T) = F0(1 + f sin y T),

p= e

with 1 - 1.5131X10-8 in this study.
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To fix the unknown cavitation boundary, the following body-fitted

coordinate transformation shown in Fig. 3 is introduced:

Y8(X - XA)

G(Y,T) - XA'

n =  Y, (18)

IJI = (G(Y,T) - XA )/YB

IJI is the jacobian of the coordinate transformation which shows that as

long as G(Y,t) is not equal to XA, there exists a conformal mapping between

the physical domain and the computational domain.

The differentiations transforms to the following:

a YB a
X G - XA a '

a a G' a
aY -an G - XA a '

a2  2

ax2  (G - XA)2 aE-
-1

a2  2(G')2  a2  a 2  [2GG'' 2 - G''(G-XA)1a
2 (GXA)2  2 G - X aan 2 A)2  (19)

The Reynolds equation in the (E,n) system is,

AP + BPEn + CPnn + DPE + EP + F = O, (20)

where

A A A3 [Y'B + tG)]

B = A3 [-2EG'(G-XA)],

C = A 3(G- XA )

S= AIYB (G - XA) - A2 G'(G - XA) + A3 [2(G') 2 - G''(G - XA]A
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2E = A2 (G - XA) ,

2
F = -A4 (G - XA) ,

A H2 LH+H3a N)

A 3H 2 aH 3 a _i)

A1- - ax+  '

2AH 3a

A2  - _ y + H ,

H3

A 12 L + 12 -a

In the above formulation, Al, A2 , A3 , and A4  can be transformed to the

( ,n) coordinate system using Eq. (19). At the cavitation boundary,

_p 1_____ 1 (Y+ )28)P -Ga 0. (21)
an r7 -p2[G - XA 5E~G)a

Since aP/an 0 at E = YBI

aP 0 P = 0 at Y (22)

At n = O(Y = 0), the symmetry condition Is,

aP aP G' 
(a

Y = an - G - X A T O (3

But, G' = 0 due to the symmetry of cavitation boundary and it follows

that,

aP = 0 at 0i=O. (24)

The transformed film thickness equation and the force balance equation

are expressed,
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2

1 E(G -~ X A)H(=,n) = H0 + 2 Y + A + q  (25)

F() = 2 j B P(,rnT) Y d dn. (26)
0 0B

In the above formulation, the unknown boundary curve function G is

introduced into the governing equations while the computational domain is

fixed.

NUMERICAL METHODS

Equation (20) is a nonlinear partial differential equation. The

nonlinearity Is due to the piezoviscous relation and to the function G in

the transformed Reynolds equation.

Spatial Discretization

In order to minimize the number of grid points while maintaining accuracy,

a smoothly varying nonuniform spacing is generated by a two-sided stretching

function, (hyperbolic tangent) (Ref. 10). The finest spacing is near the

cavitation boundary which is also near the maximum pressure gradient.

Figure 4 shows the finite difference mesh structure. The increments in

and n and are such that

I+r - A E (27)

- nJ 1  = An

j+l - nr =n An.

By the Taylor series expansion, the finite difference approximations of

derivatives with respect to E and r, are,
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-r 2 p + (r2 2 _ ,

r - ( + E l)g1  1

_P -r 2 Pl- + (r2 -)PI + P

_ n _ ,J I J +I
r (1 + r )Mr

l 9

2 rP - (r + I)PI +P-2 2 l -I ,J 1, l+1,3

aE2 - r (1 + r )a52

a 2 rP I . - (r + I)PI +p 12 - 2
an2  r (1 + r )an2

a2P
a 2~ (1 i- r 1

aan r E rn(1 + rE )(1 + r n)AAn

x 2 r 2PI-l ,J - r 2 (r 2 )P_ D - r 2 PI+ - r 2 (rr - I 3 + (r 2

E n ~ n E +,- -'

x(r 2 -)PI + (r2  1)P 1 , - r2 l + (r2 - )PI  + PI , -J r r -PP+ I, 13,J 1  , + 1 PI+ , 3+ 1]

(28)

Substituting Eq. (28) into the transformed Reynolds Eq. (20) the following

discretized equations results,

RI'J = C1PI-,J+ + C2PIJ+I + C3PI+1 ,J+1 + C4PI-IJ + C5PIJ 
+ C6PI+IJ

+ C i -  + C P + C P + C = 0, (29)

l-I 8 l,3-I 9 l+l1,3-I 10

with

PIJ = PNI,J = 0 1 < J < NJ,

PI,NJ " 0 1 < I < NI,

P1,0 = P1,2 1 < I _< NI,

PNI+I,J = PNI-1,J 1 < J < NJ.
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Steady-State Solution Method

The transient solution is formed by computing the steady-state solution

for each time step Including the squeeze term. The numerical technique for

the steady-state solution along with the Thomas algorithm and Newton-Raphson

method is described first.

The discretized form of transformed equation is,

K(U)U = F (30)

The vector u represents the unknown values, pressures and cavitation

boundary. For an Isoviscous condition K(), contains the function G, and,

for a piezoviscous condition, it includes pressures as well. The discretized

simultaneous equations are nonlinear. Even for the linear free boundary value

problem, it has a nonlinear characteristics since the unknown boundary is

associated with the solution.

The Newton-Raphson method is described,

4 4 1 +1 4+u -u uk ) (u (31)

K k- (u)Ruk

where R(+uk) K(uk)Uk - F is the residual vector and J(u) is the Jacobian

of the system of equations. In practice, the iteration is organized as,

+ + 44- 4 +
uu = -R(u, Uk = uk + Auk. (32)

For this study, the vector u is,

u -' , . .. -l ,J )T = I,NJ - 1 (33)

in which Pl,j and PNI,J are zero from the Dirichlet boundary condition.

The residual vector R is,

R- ,(R2 J, R3 ,J'" RNI ,J RNIJ '. J = 1, NJ - 1 (34)
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The Jacobian matrix is a block tridiagonal matrix in Fig. 5, and each

block is a one-sided arrow-shaped matrix, Fig. 6. In the formulation of each

block matrix of the Jacobian, the last columns are the differentiations of the

residual vector with respect to the cavitation boundary function, G. Since all

the coefficients in the discretized Reynolds equation are composed of Gj, G'j,

and G''j, it is easier to calculate them numerically (Ref. 11) using:

8R1  = I RI(G + gw) - Rl (GJ wl (35)

aG3  C g L'J33  g'J IJ 'IJI

where wI,J contains all other variables except Gj. The value of

cg can be chosen to be sufficiently small not only to maintain good accuracy

of Eq. (35) but to prevent serious round-off errors. In this calculation,

eg is set to 10-9 in double precision.

The block tridiagonal system of Eq. (30) is solved by the Thomas

algorithm (Ref. 12). This algorithm inverts the whole matrix at a time by

matrix multiplication and inversion of the block matrix, which is quite fast

on a parallel processing computer with small memory storage size equal to

2 x NI x NJ x NJ. The matrix inversion is accomplished using LINPACK.

The Newton-Raphson method requires a good initial guess of the solution.

For this purpose, the Gauss-Seidel Iteration method is used to get an

approximate pressure distribution and cavitation boundary location. Once one

solution is obtained by the Newton-Raphson method, it is used for the guess to

next solution. The convergence criteria are

(I) pressure

PY pk+l IkJk - < 1.0x1 -4

15



(2) cavitation boundary

ZI Gk'l - Gk j ioxo_J < .OxlO - 4

(3) force balance

IF input - Foutputl
F. < l.Ox1O-4

Finput

In order to make sure of the convergence, the L2-norm of the residual

vector is monitored. In general, the solution converges within 3 to 8

iterations. In this study, NI = 41, NJ = 31.

Transient Solution Method

For the steady-state solution, the problem is to find H0  for a given

load, or for a hydrodynamic case, the load capacity can be calculated for a

given HO . But, for the transient case, there is an additional unknown value

to be determined, the squeeze velocity. The basic solution technique is to

use a "time-march." That is, H0  is fixed from the previous time step, and

the squeeze velocity is found that balances the generated pressure distribution

with the dynamic force at that time. The detailed computation procedure is

provided In Fig. 7. At the first time step, the steady-state Reynolds

equation is solved to find Hom, and, fixing H0 , the transient Reynolds

equation is solved including the squeeze term to find the squeeze velocity

using the force balance equation. For this purpose, a bisection method Is

used, with an approximate range of squeeze velocities according to the history

of dynamic force and the minimum film thickness variation. Once a converged

solution is obtained, the minimum film thickness of the next time step is

estimated from the following expression:
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= Hn + HnAT, (n = present time step) (36)

0 0 +a\TI

The film thickness and squeeze velocities are established at successive

time steps and the calculation is continued beyond the first complete loading

cycle until the periodic requirement is reached. The convergence criterion is:

(H ) IC+l - (H )ICIOn ) l.x10lO 4 , IC = number of cycle
(Ho)n

In this calculation, 361 time steps with 10 increment are used in one

loading cycle.

RESULTS AND DISCUSSION

The analytical solution of the step bearing demonstrates that 6 approaches

one with a phase-lag of 900 as y increases (Fig. 8). This asymptotic

behavior is due to the squeeze action caused by the dynamic forces. Figure 9

shows the squeeze variation of Eq. (11). This phenomenon is physically

similar to a nonlinear massless spring-damper system with forced vibration

shown in Fig. 10, sometimes referred as a "half a degree of freedom system."

The response of this system is that the amplitude approaches a constant value

and the phase-lag goes to 900. Although the transient solution of the point

contact problem can not be solved analytically and requires numerical

computation, it may be speculated that basically it also has a similar

nonlinear spring-damper system. In the following example, the numerical

results of the point contact problem are compared to the step bearing solution.

For this study, F0  = 3000 and B . 0.3 with different y's. The

minimum film thickness for F0  is 1.2471xlO
-5 for the isoviscous case and

1.3907x10- 5 for the piezoviscous effect with XA = 0.08, YB = 0.06. Figure 11

shows the pressure distribution for F0  and Fig. 12 delineates the detailed
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cavitation boundary curve in which the minimum value of G occurs at Y = 0

and it increases up to a certain location and then decreases because of the

geometry of the sphere.

Figure 13 illustrates the time variation of the normalized minimum film

thickness (RO ) during one loading cycle with 361 time steps. The squeeze

velocity distribution is shown in Fig. 14 for different y's. These results

are qualitatively similar to those of the step bearing solution. However, it

should be noted that the order of the nondimensional excitation frequencies is

different since L is used as a reference length in the step bearing while

R is used for the point contact case.

Equation (10) may be put in the following form,

I 112
= + a s sin(yt - s

where

a *s =tan-1XsY) Xs= (37)
asV 1 + (X 

sy) 2

The variation of as and *s are plotted in Fig. 15.

For quantitative analysis of the transient point contact problem, the

following formula is suggested by Eq. (37),

1 12
H0 : + a p sin(y- p) (38)

Equation (38) is deduced based on the fact that HOm is inversely

proportional to F2 whereas 60m to F0. The unknown values in Eq. (38),

ap and p, are obtained by a nonlinear least square fit with 361 data

point. Figure 16 shows the comparison between the numerical results and the

curve fit. The best curve fit can be obtained by letting the numerator of
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Eq. (38) be variable, however, it Is near 1, for example, 1.005 for y = 100,

1.019 for y = 1000. The curve fitting results are recorded in Table 1.

Fig. 17 shows the variation of ap and *p, qualitatively, similar

characteristics to the analytical step bearing solution with different order

of magnitude of y (Fig.15). The value of Xp is obtained assuming the

following relation,

Op = tan- 1 (py) (39)

-Ap is nearly constant over a wide range of y, approximately 0.0054. If an

analytical solution were possible, the ap would be a function of Xp.

However, since it also would be a function of the geometry associated with the

cavitation boundary, no attempt is made to obtain a form similar to Eq. (37).

Instead, for design purposes, Eq. (38) can be used along with Table 1.

For the piezoviscous solution, ap Is smaller than that of the isoviscous

solution (Fig. 17), but Op'S are virtually the same. The ap's

asymptotically approach those of the isoviscous case. Figure 18 shows this

more vividly. Due to the piezoviscous effect, the distribution of Ho is

more damped with the same phase angle. The Xp'S for the piezoviscous case

are nearly constant and equal to the Isoviscous case (see Table 1). This

implies that Xp is a characteristic of the transient point contact problem

of the current model.

Figure 19 illustrates the location of the outlet boundary at Y = 0

normalized by that for the steady-state solution of FO . For the steady state

case, G(O,T) approaches the point of contact as the load increases. However,

when y is greater than zero there exists a substantial variation in G(O,T)

due to the squeeze action. When the squeeze is downward, G(O,T) may be

stretched outward and vice versa. For example, when y = 200, there is a
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downward action between a-b and c-d in Fig. 19, and upward action between

b and c. These points correspond to those in Fig. 14.

In the foregoing analysis, the Reynolds Eq. (12) neglects the inertia

forces. But, as y increases, the validity of this assumption becomes

suspect. This assumption is examined by an order-of-magnitude-analysis

of the steady-state Navier-Stokes equation in Ref. (12). When the modified

Reynolds number is much less than one,

h2

(Pu02) ( hP)2 < 1 (40)

the inertia forces can be neglected. Here, uo is a reference velocity,

2. is a reference length in the x-direction, and h0 is that in the film

thickness direction. Using,

Rw (41)U0  = Rw; T - Um 41

the following relation for the validity of the assumption that inertia

forces are negligible Is,

lho hoUm
1e = 0 Re 0 m (42)

Y H Re' 0 R' v

For example, if H0 = l0-5 , R = 10-2 m, u = 0.1 m/sec, and

v = 10- 5 m2/sec,

y 0 108 (43)

Even for y - 1000, inertia effects remain negligible.

CONCLUSIONS

The transient solution of the hydrodynamically-lubricated point contact

problem including the squeeze effect is obtained numerically using the

ball-on-plane model. A new computational algorithm is implemented to deal

with the cavitation boundary by the semidirect method with the advantage of
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supercomputing. This method provides a faster and more rigorous way to solve

the nonconformal contact problem with a Newtonian fluid than the conventional

iterative method, and the flexibility to deal with more complex boundary

conditions for lightly loaded bearings and more realistic rheological models.

The qualitative and quantitative analysis is compared with the analytical

solution of a dynamically loaded step bearing solution using a nonlinear curve

fitting method. It is found that there exists a cnaracteristic similarity in

the transient responses to a nonlinear massless (i.e., no inertia)

spring-damper system, in terms of the variation of the minimum film thickness

and phase angle. According to an order of magnitude analysis, it is confirmed

that the Inertia-forces are negligible for a wide range of practical

excitation frequencies.

These results can be applied to the design of moderately loaded ball

bearings in rotordynamic systems and can be extended to gear design adding the

time variation of the geometry and speed. For highy loaded elliptical contact

case, the elastic deformations and ellipticity parameter need to be considered.
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TABLE I - CURVE FITTING RESULTS OF EQ. (38)

Isoviscous Piezoviscous

y CLp p XP (xp p XP

0 0.890 0.0 0.734 0.0
25 .882 7.0 0.00491 .728 7.0 0.00491
50 .859 14.7 .00523 .709 14.7 .00526

100 .781 28.3 .00538 .646 28.4 .00541
150 .687 39.2 .00544 .571 39.2 .00544
200 .599 47.5 .00545 .499 47.4 .00544
250 .523 53.8 .00546 .438 53.7 .00545
300 .461 58.7 .00547 .386 58.5 .00544
350 .409 62.3 .00545 .343 62.3 .00545
400 .368 65.3 .00544 .309 65.2 .00541
500 .303 69.8 .00544 .255 69.8 .00544
750 .210 76.1 .00539 .176 76.1 .00539
1000 .159 79.4 .00536 .134 79.4 .00536

f (t) =fo 0I Bsincot)

L

y ~h(xt)

U1

Figure 1. - Schematic view of the step bearing configuration.
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f (t) - -fo (1 sinw~t)
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(a) Physical domain. (b) Computationl domain.
Figure 2. - Physical model of the point contact problem. Figure 3. - Coordinate transformation of te pnysical domain to the

computational domain.
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Figure 4. - Finite difference mesh structure. Figure 5. - The Jacobian matrix of eq. [32).
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Figure 16. - Comparison of the numerical results with Figure 17. - cpand $p in eq. [38] as function of y.
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